
Representation Learning for In-hand Object
Manipulation

Gonçalo Chambel
goncalo.chambel@tecnico.ulisboa.pt

Instituto Superior Técnico, Lisboa, Portugal

September 2021

Abstract

More and more often, humans rely on robots to replace them in performing simple tasks. However,
the ability of robots to adapt and perform more complex tasks is still reduced, specially when it comes
to dexterous tasks. The goal of this thesis is to develop a model that is capable of using in-hand
manipulation to control a set of objects using Deep RL methods, based on the tactile feedback obtained
from a simulated robotic hand. This is a complex problem for Deep RL algorithms, due to the large
number of variables to account for. To bypass this, this work intends to explore the possibility of using
a latent representation of the state, in order to test if the updated model learns faster and/or better to
perform a set of predefined tasks in a simulated environment. This representation is obtained from
another model and should be comprised of only the most important features of the original state.
Moreover, to further reduce the number of variables, this work evaluates the performance difference in
using different action spaces and synergies to control the robotic hand. The main result of this work is
that by using the latent representation of the input, the controller is able to generalize the manipulation to
objects that have unique shapes. Regarding the different action spaces, this work also demonstrates that
by using synergies, with a dimension of less than half than the original dimension, the controller is able
to achieve the same level of performance.
Keywords: In-hand manipulation; Deep RL; Representation Learning; Robotic hand.

1. Introduction

Robots of all kinds have been present in our lives
for the past years. They have become an essen-
tial part of our modern lives, whether to replace
us when performing dangerous tasks, such as dis-
arming bombs, or to make our lives easier when
performing simpler tasks, such as moving objects
from place to place. But even though robots are
becoming an important part of our daily lives, most
of them still perform tasks that are simple for us, al-
though not for a robot. An example of such applica-
tions is the filed of dexterous manipulation. While
vision-based methods have achieved good results
in this field, they can lead to hard to solve prob-
lems such as not being able to infer important prop-
erties of the manipulated object (e.g. its weight
or friction). Additionally, visual information can be
hampered by possible occlusions. There is another
reason as to why developing an in-hand manipula-
tion capable robot is a difficult task, which is related
to the high number of dimensions of the state and
actions to consider. The goal with this work is to
have a model that can manipulate any object and
efficiently learn to perform any given task. As indi-

cated before, using vision-based methods may not
be the suitable approach, so instead, it is proposed
a model that will mostly rely on tactile information.
Additionally, this work intends to explore the pos-
sibility of using a condensed representation of the
input state in order to provide more useful informa-
tion that will aid in the manipulation of the objects.

This paper is structured as follows. In Section 2
we briefly introduce the most important Reinforce-
ment Learning (RL) concepts and algorithms used
in this work. Section 3 gives a system overview,
describes the proposed goals and how they are
going to be achieved in more detail. Section 4 de-
scribes the main results obtained throughout the
experiments conducted. Lastly, Section 5 presents
the main conclusions to draw from this work.

2. Background
2.1. RL
The purpose of a RL method is to learn a func-
tion that determines what action to take in a given
state such that the total expected future reward is
maximized. Such a function is called an optimal
policy. Achieving the optimal policy requires explo-
ration and experimentation in a given environment.

1

In more detail, most RL problems can be defined
as a Markov Decision Process (MDP) defined by
the tuple (S,A, P, r, ρ0, γ, T) where S is a set of
states, A is a set of actions, P : S × A× S → R≥0
is the transition probability distribution (that mod-
els the changes of states), r : S × A is the reward
function, ρ0 : S → R≥0 is the initial state distribu-
tion, γ ∈ [0, 1] and T is the horizon. The factor γ
is the decaying factor which determines how much
an updating step influences the current value of the
weights of the networks. The horizon T defines
how many steps into the ”future” the agents has to
take into account.

Most of the RL algorithms optimize a stochastic
policy πθ : S × A → R≥0. Let η(π) denote its ex-
pected discounted reward for horizon T , t:

η(π) = Eτ [

T∑
t=0

γt(r(st, at)], (1)

where τ = (s0, a0, ...) denotes the whole trajec-
tory, s0 ∼ ρ0(s0), at ∼ π(at|st) and st+1 ∼
P (st+1|st, at). Within RL problems, there is the
distinction between continuous and discrete space
environments. There are different algorithms for
these scenarios and the problem at hand is de-
fined as a continuous space environment. The
work in [7] provides an extensive review of the state
of the art of Deep RL methods used in continuous
control. Proximal Policy Optimization (PPO) [13]
is a popular Deep RL algorithm which was used
throughout this work. It simultaneously optimizes
a stochastic policy as well as an approximator to
the value function. PPO interleaves the collection
of new episodes with policy optimization. After a
batch of new transitions is collected, optimization
is performed with minibatch stochastic gradient de-
scent to maximize the objective [2]:

LPPO = Emin

(
π(at|st)
πold(at|st)

Ât,

clip
(π(at|st)
πold(at|st)

, 1− ε, 1 + ε
)
Ât

)
,

where π(at|st)
πold(at|st) is the ratio of the probability of

taking the given action under the current policy π
to the probability of taking the same action under
the old behavioral policy that was used to generate
the data. Here ε is a hyperparameter that controls
the amount of clipping and Ât is the advantage
function. This loss encourages the policy to take
actions that are better than average (have posi-
tive advantage) while clipping discourages bigger
changes to the policy by limiting how much can be
gained by changing the policy on a particular data
point.

2.2. Representation Learning
Representation Learning is a concept where the
objective is to extract useful, unlabeled information
from the input data. The goal is to train a model
that will learn what are the most important features
of a given input, to later use that information. Usu-
ally, this representation is in a latent space, i.e. it is
represented with a lower dimension that the origi-
nal one. There are several ways one could achieve
a representation of the input but in this thesis it was
only used one: the Autoencoder (AE).

The ability of an AE to condense information and
to only map the most important features of the input
allows for models to be trained in a different way.
More specifically, it can be of use for manipulation-
like problems where the input has a high dimension
since it allows to reduce that dimension.

2.3. Related Work
One of the most recent works in this field is [2],
in which the authors developed a model capable
of manipulating a cube to a specified pose, us-
ing vision. The model was trained with PPO and
it was first conducted in a simulated environment
and then transposed to the real environment. A
key point in this work that allowed for the model to
have a good performance on the real environment,
were the randomizations (e.g. physical properties
of the object, added noise) introduced in the train-
ing period.

Other works [15], [5], [12] focus on using tactile
data. The objective in [15] was to move several
cylindrical objects from one point to another using
a two fingered hand. Y. Chebotar et al. [5] also
add to this aspect in the sense that the model is
able to adapt to the changing environment. A. Ra-
jeswaran et al. [12] focused on having a robotic
hand that is capable of performing every-day tasks
such as opening a door, manipulating a tool, etc.
The results showed that this new method was up to
30 times faster than learning from scratch, in some
tasks.

Representation Learning became a topic of in-
terest since it provides a way to characterize data
in a more efficient way [3]. There are multiple ap-
proaches to tackle this problem and using an AE
is a common approach. Z. Zhu et al. [17] use this
method to compute a 3D shape of an object from
multiple 2D images of that same object. A more
manipulation-oriented work was presented in [14].
By developing a RL algorithm that leverages repre-
sentations learned from an AE, they were able to
model a 5 Degrees of Freedom (DOF) robot to ma-
nipulate a pole to a given orientation, while using
visual data. M. C. Gemici et al. [9] propose a learn-
ing algorithm that takes as input tactile sensory sig-
nals of a robot obtained while performing actions
on the objects (which were food in this cause), to

2

then extract useful features from these signals and
map them to physical properties of the objects. Z.
Wang [16] uses Representation Learning to infer
important object properties, such as its pose, from
tactile data. The learned representation is used to
train a control policy which is then transferred to a
real robot.

2.3.1 Literature Analysis

In conclusion, in-hand manipulation has been a
topic of interest for the past few years and there are
many possibilities for future directions. Although
the works presented in the above sections are suc-
cessful in what was desired for each work, most
of them face some difficulties/limitations. For ex-
ample O. M. Andrychowicz et al. [2] relied on in-
tensive simulation, data and model augmentation
to perform a single task and since it uses vision,
the model won’t most likely adapt to objects of the
same dimension, but with different weights or fric-
tion coefficients. A. Rajeswaran et al. [12] relied
on human demonstrations to speed up the training
process and to achieve the desired behaviour, thus
needing extra hardware. Y. Chebotar et al. [5] were
able to adapt to the changing environment and to
test the model on a real robot, but the tactile sen-
sors used are not feasible for a real-life application
since they are too big (16 cm x 16 cm).

3. Methodology
3.1. Architecture Overview
As mentioned before, an important objective is
to develop a model capable of in-hand manipula-
tion tasks, in a simulated environment. The first
approach is to use the aforementioned Deep RL
methods in their standard form, to train a model ca-
pable of learning a specific task. This model would
take as input a state and will output a certain ac-
tion. This action will control the movement of the
joints in a humanoid hand. Although this approach
by itself can lead to good results, it also leads to
a few problems, which may influential the learn-
ing process and overall performance of the model.
Those problems are:

• the high number of DOF

• nonexistent generalization for different objects
and for different objects

The problem of the high dimensional action
space can be solved by reducing the number of
actions the model can take, while maintaining the
ability to manipulate objects (using synergies). Re-
garding the remaining problems, their solution is
not so trivial. To solve them, an new approach is
proposed. The main concept of this new approach
is to have the Deep RL methods learn over a re-
duced feature set that only contains the relevant

information for manipulating an object. The overall
architecture for this new approach is presented in
Figure 1.

Figure 1: Updated architecture intended to generalize the in-
puts given to the model.

The difference between the proposed architec-
ture and the common procedure with Deep RL
methods, is that now the input is first passed
through another model, the Forward Model, which
will produce two outputs. The most important one
here is the learned representation Ft, which will
comprise only the most important features of the
state that are relevant for the task at hand. This
Forward Model will have an AE-like architecture
and it should be trained with a rich dataset (multi-
ple objects and different tasks). Its input will be the
state and the output will be a prediction of the next
state given a certain action. The training set for this
model should comprise data obtained while ma-
nipulating different objects and with different tasks.
This way, the Forward Model will be able to repre-
sent the state, regardless of the type of object or
task. Moreover, the Forward Model will be able to
”filter” the information contained in the state vec-
tor and feed that pre-processed information to the
Deep RL model. This new input will allow for:

• a faster training process

• robustness to different objects and to different
tasks

3.2. Simulator
Deep Learning methods usually need a large
amount of both data and time to learn a model so
a good approach is to train a certain model in a
simulator first, where it is possible to train faster
and there is no risk to damage a physical robot.
There are many options when it comes to simulat-
ing robotic environments and some articles, such
as [8] and [11]. Both showed that MuJoCo has one
of hightes ratings. A key factor in favor of MuJoCo,
is that OpenAI created an interface called OpenAI
Gym [4] that allows to easily implement RL meth-
ods in their environments and disposes of premade
models to be used in the MuJoCo engine. In par-
ticular, the OpenAI Gym framework includes a sim-

3

ulated model of the Shadow Dexterous Hand [1]
shown in Figure 2(a) which is a viable model to use
to train the models proposed. For this reason, the
MuJoCo engine was chosen.

(a) Simulated model of the Shadow Hand
hand

(b) Actuators present in the Shadow Hand.
Image taken from [6].

Figure 2: On the left, the simulated model of the Shadow Hand,
provided by the OpenAI Gym framework; on the left, the location
of all the actuator in the Shadow Dexterous Hand.

As it can be seen from Figure 2(b), the hand has
24 DOF with 4 being passive while 20 are actua-
tors. Another key feature of the simulated model of
the Shadow Hand developed by the OpenAI Gym
interface is that the hand has 92 built-in tactile sen-
sors which makes this model very suitable for the
proposed goals. These simulated tactile sensors
provide readings of pressure applied to the sensor
and will be used to provide feedback to the Deep
RL algorithm. It is also important to define how a
certain action will control the model. The action
is a vector of values where each component will
control a particular actuator from the ones shown
in Figure 2(b). An action can be defined as such,
A = {a0, a1, . . . , an} where n + 1 is the dimension
of the action vector, which by default is the total
number of actuators (20) and where ai ∈ [−1, 1].

Another important factor when choosing the right
simulator is what kind of data it is possible to ex-
tract from the simulator. Apart from the touch sen-
sors, there are other information that are going to
be used to train the model, which are available
within the simulator. These are: touch sensors val-
ues; object’s pose (position and orientation), and
linear and angular velocity; joint amplitudes and ve-
locities

The touch sensor values are the ones previously
presented in Figure 2(a) where each sensor de-
tects a measure of pressure. The object position
is measured in meters, the orientation is measured
in radians and the velocities are measured in me-
ters per iteration (linear) and radians per iteration
(angular). Lastly, the information about the state of
the hand is also included, namely the amplitude of
each joint, in radians, and the angular velocity of
each joint, again in radians per iteration. With this
information, one is able to fully define the state of
the environment and it is with this information that
the model will try to learn the optimal policy. Finally,
the OpenAI Gym framework also made available 3
different objects, presented in Figure 3 which will
be important when testing the ability of the model
to adapt to new objects. These objects will be use-

(a) Cube (b) Egg (c) Pen

Figure 3: Objects to be tested on the different models.

ful when testing the trained model given different
objects and to also gather more diverse data for
the Forward Model.

3.3. Action Dimension
An important factor when implementing a RL
model is to define what and how many actions the
agent can take. For the case of the ShadowHand,
the algorithm would have to choose 20 different
values every time instant, making the process of
learning the influence of each actuator, relatively
slow. One approach to solve this problem, or at
least to facilitate the algorithm when searching for
the best policy, is to reduce the number of active
actuators. This would effectively make the model
learn faster, but it would also mean that the hand
would lose DOF, thus losing dexterity when ma-
nipulating. So, instead of completely removing a
few actuators from the hand, intra-synergies were
added. These synergies will allow for some joints
to move according to others, much like when some-
one bends a finger, they bend all three joints at
the same time. With these synergies, it is pos-
sible to reduce the number of actions needed for
the model, with minimal cost to the dexterity of the
hand.

These synergies were obtained by trial-and-
error, while testing for the ability of the hand to
move an object. Several changes were made to
the base DOF and they are summarized in Table
1. This table indicates which actuators were used,

4

Table 1: Updates made to the DOF of the Shadow Hand. In this table, ”F” stands for ”Finger, ”T” for ”Thumb” and ”W” for ”Wrist”.
The actuators that are referred in Table 1 are the ones presented in Figure 2(b).

Actuators
F1 F2 F3 F4 Little F5 T1 T2 T3 T4 T5 W1 W2

Used Yes Yes Yes No Yes Yes Yes No Yes Yes No No
Parent
joint F2 F4 None F4 (of the

little finger) T2 None None None

α 1 1 N.A. 0.5 0.7 N.A. N.A N.A

and if they had a parent joint. By saying that a cer-
tain joint has a parent joint, it is meant that the joint
itself does not move independently, but instead,
moves according to its parent joint. The relation
between the parent joint and the joint is given by

θ2 = α · θ1, (2)

where θ2 is the joint and θ1 is the parent joint. α
is just a multiplying factor that is also presented in
Table 1.

3.4. Controller
The Controller is one of the most important parts
of this work, since it will be responsible for actu-
ally manipulating the object. This Controller should
take into consideration the state of the object and
act on it, in order to achieve the desired result.
Deep RL methods will be used to train this model,
since they are useful when a model has a spe-
cific task to fulfil and the action-state space is too
large to fully explore it. In order to further define
the Controller, it is necessary to identify the input,
the output, and the tasks, i.e. the state, the ac-
tions and the reward functions respectively. The
state and actions were already defined before but
a small change to the actions was made. Instead
of using control, i.e. θt = β · t where θt represent
the amplitudes of each joint, at is the current ac-
tion and β is a scaling factor, it was used a relative
control where ∆θ = β · at where ∆θ = θt − θt−1.

It is also necessary to define a set of reward
functions that will aid the Controller in learning spe-
cific tasks. Three main tasks were considered:

• ”random” babbling of the object

• rotate the object a certain amount, in a given
axis

• lift the object of the palm of the hand

The last two tasks are more goal-oriented and the
first one is a more exploration-oriented task. The
first task has the objective to explore the object,
while constantly manipulating it, i.e. explore dif-
ferent states. This is important in order to collect
data for training the Forward Model. The second
and third tasks have the purpose of evaluating the
controller in dexterous manipulation movements.

These were the tasks that were implemented and
tested since they cover three different objectives,
with three different types of in-hand manipulation.
In the next subsections, the reward function for
each task will be presented.

3.4.1 Task 1: Task-free object manipulation

The motivation behind this task is related to how
babies would learn to manipulate an object. Ba-
bies often pick up an object without any particular
reason and play with it with no particular objective.
The objective of this task is not directly related to
evaluating the performance of the Controller, but
instead to gather data for the Forward Model. As
explained before, it is important the the Forward
Model is trained with rich and diverse manipulation
data, so if the Controller is performing a task where
the objective is to explore as much of the object as
possible, the data collected will be as diverse as
possible. In a certain way, exploring the object, can
be seen as ”inspecting” every side of the object.
With vision, this would translate to viewing every
side of the object. A way to mimic vision would be
to keep track of all the orientations that the object
was already in. So, by making use of the simu-
lated environment (which allows the direct access
to the object orientation), it is possible to motivate
the algorithm to achieve orientations that have yet
to be achieved. The reward function for this will
evaluate, at every time instant, if the current orien-
tation was already visited or not. If yes, a reward of
+1 is given. Moreover, there is a set of key orien-
tations that will award a bigger amount of reward
to the model, if said orientation is achieved. The
main reward for the model comes from the use of a
dictionary that contains most possible orientations.
This dictionary does not contain every single possi-
ble orientation, as that would be an infinite number.
Instead, each orientation has 4 values (since they
are expressed in quaternions) and each value was
discretized into 11 bins. Additionally, the algorithm
is penalized with a reward of -10 every time the
object is dropped. With the reward function pre-
sented, one is able to manipulate the object by di-
rectly exploring different orientations.

5

3.4.2 Task 2: Rotating the object

Opposed to the previous task, this one has a well
defined objective. The goal is to rotate the object a
certain amount, around a given axis. Note that the
goal orientation is different from the start orienta-
tion in a single axis. In this experiment the object
starts in the same orientation every time and the
goal orientation is chosen by:

θg = random x, x ∈ |x− θc| >
π

6
(3)

where θg is the goal orientation and θc is the cur-
rent orientation. By forcing the goal orientation to
be at least ± 30º than the current orientation, it is
possible to eliminate cases where the goal orienta-
tion is achieved ”by accident”.

Regarding the reward function, a mixed between
sparse and dense reward functions was adopted.
Similarly to the reward function presented above,
the method is both rewarded for achieving some
key orientations and for achieving the goal orienta-
tion. The difference here is that these key orienta-
tions are computed so as to serve as intermediary
orientations between the current and goal orienta-
tions. They are obtained by computing the orien-
tations that would lead to the goal orientation in
the most straightforward way. Since we are only
dealing with rotation in one axis these rotations are
simple to compute. Although the orientations are
originally defined in quaternions, in order to com-
pare the current orientation with the key orienta-
tion, they are converted from quaternions to euler
angles.

3.4.3 Task 3: Lifting an object

This final task intends to explore the ability of the
model to achieve precise grasping. The goal is to
lift an object off the palm of the hand, ideally using
the tip of the fingers. The reward function for this
task is relatively simple and its given by:

r = is on palm() + (hs − hi) ∗ 10, (4)

where hs is the starting height of the object, hi is
the current height of the object and the function
is on palm() will reward ± 1 depending if the ob-
ject is on the palm of the hand or not (-1 for being
in contact with the palm and +1 otherwise). The
parameter hs is defined as a constant, bigger than
hi could ever be. This way the algorithm will be
constantly trying to minimize this difference. Ad-
ditionally, the multiplying factor of 10 is applied so
that the ”height” factor of the reward function has
the same impact as the ”palm” factor. It is possible
to detect if the object is in the palm of the hand by
verifying the status of the touch sensors located in
the palm. If any of them has a value different than

0 (meaning that some pressure is being applied)
then it is considered that the object is on the palm.

3.5. Forward Model
The Forward Model is the main contribution of this
work. Its goal is to provide the Controller with valu-
able information to be used when manipulating an
object. This information should be obtained by
training the Forward Model with the manipulation
dataset, to extract the most useful features from
the state vector. In the case of this work, this model
will follow a specific architecture, similar to an AE,
since it will have an encoder and decoder network.
The encoder part will be responsible for encoding
the state vector, into a latent representation, which
in turn will be decoded to the output vector (the
next state). The difference from the Forward Model
to the traditional AE, is that the output vector will
not be equal to the input vector. This way, it is pos-
sible to train the Forward Model to learn to predict
the next state (given an action), and to compute
a representation of the current state, at the same
time. The architecture used is depicted in Figure 4.

Figure 4: Detailed architecture, with number of layers and units
per layer of the Forward Model used.

There are five main elements in Figure 4: two
input signals (the state and action) and three out-
put signals (the latent representation, the predicted
touch values and the predicted object pose for the
next time instant). In this case, the action vector
is only taken into account for the decoder network.
An important aspect of every model, is to have an
adequate loss function. This function is what will
dictate how the model will learn to perform a cer-
tain task, by evaluating the difference between the
predicted output and the true output. Due to the
distinct nature of this problem, a custom loss was
defined:

L = Lpos + β ∗ Lrot + Lsensors. (5)

In (5), Lpos is related to the difference between the
predicted and true object position, Lrot is related
difference in predicted and true object orientation
and the same for Lsensors, considering the true and
predicted values of the touch sensors. The fac-
tor β acts as a scalling term, in order to give more
importance to certain losses. In this case, since

6

the prediction of orientation is of substantial impor-
tance, β was set to 10. The loss Lpos is relatively
simple and it is given by the Mean Squarred Er-
ror metric. Regarding Lrot, the loss is given by
the norm of the Mean Absolute Error (MAE) be-
tween the true and predicted orientations. How-
ever, since we are dealing with quaternions, and
the quaternion q originates the same orientation as
the quaternion −q, a small modification was made.

Lrot = min(MAE(q − q̂),MAE(q + q̂)) (6)

where q is the true quaternion and q̂ is the pre-
dicted quaternion. Lastly, regarding Lsensors, con-
sidering the type of data we have (where the data
points for each entry are mostly zeros), standard
loss functions cannot be applied. In order to by-
pass this problem, the following loss function was
implemented:

Lsensors =

{
β2 · (ŷ − y), if (y > 0 ∧ ŷ < 1e−3)

0, else
+{

β10 · ŷ, if (y == 0 ∧ ŷ > 1e−1)

0, else
,

(7)
where y are the true touch sensors values, ŷ are
the predicted ones, and β is the same as the one
in (5). This function computes a vector (with the
dimension equal to y and ŷ) where each value in-
dicates the error for the correspondent sensor. If
the true sensor is active but the predicted one is
not, then that value is given by the first term of the
loss in (7). On the other hand, if the true sensor is
not active but the predicted one is, then the value
is given by the second term of the equation.

4. Results & discussion
So far, all the methodologies that were used in or-
der to achieve the proposed goals have been de-
scribed. It was presented a method for evaluat-
ing the ability of the Controller to perform certain
tasks, and a method for evaluating if by using a
Forward Model, the performance of the Controller
will increase or not. In this, section the main results
from each experiment are going to be discussed.

4.1. Train and test Forward Model
The Forward Model was designed to help the Con-
troller in making more informed decisions regard-
ing the manipulation of a set of objects. The objec-
tive is to have the Forward Model filter the raw ob-
servation obtained from the environment and out-
put a new input to the Controller, that will only con-
sist of relevant information for manipulating all ob-
jects. All the layers are fully connected, with the
ReLU activation function, except for the bottleneck
layer, which used the tanh activation function. The
data to train the Forward Model was obtained by

collecting information on every iteration throughout
training of the Controller, using Task 1. In order
to obtain the best Forward Model, different models
were trained and tested in the test dataset where
two different parameters were changed: the batch
size and the dimension of the latent representation
(number of units of the bottleneck layer). An exam-
ple of two different models is presented in Figure
5.

(a) Loss for Forward Model
with a representation of 5 units.

(b) Loss for Forward Model
with a representation of 40
units.

Figure 5: Loss for two different models, trained with a batchsize
of 256.

There are two main observations from the re-
sults presented in Figure 5. The first is that the
loss decreases with training as would be expected,
indicating the model is learning. The second ob-
servation is that there seems to be no difference,
in terms of loss, in using a representation of 5 units
versus using one of 40 units. Theoretically, the rep-
resentation with 40 units would be able to more ac-
curately predict the information since it has more
”space” to code the information into, but this was
not verified. A possible reason is that the model
was not able to learn how to predict the values re-
garding the touch sensors. Upon closer observa-
tions of the results it was found that the loss for the
sensors was mostly constant during training, and
the only thing the model learned was to correctly
predict the orientation and position, with an aver-
age error of 17º and 15 millimeters, respectively.
This suggests that the model is not capable of con-
sistently predicting the touch values, which could
have hindered the learning process for the remain-
ing losses, thus explaining the similar results be-
tween all models.

Nonetheless, from this point on, a specific model
needed to be chosen, so it was opted to use the
model that was trained with batch size 256 and had
40 units for the representation. This was the cho-
sen model, since as stated before, a bigger repre-
sentation dimension is often related to more accu-
rate representations.

4.2. Controller versus Forward Model
The goal with this experiment is to evaluate the
difference in performance between using a model
that learns without the state representation, and

7

one that does. To evaluate the performance of
both, the models were trained with multiple objects
at the same time. Instead of just using a single
object during training, the object is changed mid
training, forcing the model to adapt to the new ob-
ject. The training will start off with one object, then
change to another and so on, going through the
objects depicted in Figure 3. The order in which
each object appear is fixed and is as follows: Cube
→ Egg → Pen → Cube → Pen → Egg → Cube.
With this order, it is possible to test every possi-
ble transition between two different objects. For
this experiment, a different model was trained for
each object with 200000 iterations. Each task was
trained 4 different times, each time with a different
seed, to minimize outliers. First we will analyse the
training process for each task, and after the test
results.

(a) Average reward during
training for Task 1.

(b) Average reward during
training for Task 2.

(c) Average reward during
training for Task 3.

Figure 6: Reward during training for all three tasks for the two
different models. Blue lines for the Cube, red for the Egg and
green for the Pen.

The results after training for each task are shown
in Figure 6. It is important to note that each line in
Figure 6 represents a different model, and differ-
ent colors represent different objects. Additionally,
each model’s starting point, is the previous model’s
ending point. So this can be seen as one big indi-
vidual model that was divided into 7 different mod-
els (one for each object used in the aforementioned
order). Each of these lines will also be referred to
as training periods.

The first observation is that both models were
not able to properly learn to perform Task 2. The
small increase in reward for the different training
periods indicates minimal learning. The second
conclusion is that the models using the raw Con-
troller tend to have a higher average reward. This

is mostly visible in Tasks 1 and 3 (Figures 6(a) and
6(c) respectively). However, this does not neces-
sarily imply that the Forward Model failed to fulfil
its purpose. It is normal that the raw Controller
outperforms the models using the Forward Model,
because in this case the Controller is only training
with one object at a time, while the Forward Model
was designed to be object-agnostic.

In the previous observations, the models us-
ing the Forward Model were being compared to a
model specialized in learning a particular task for
a given object. This is an unfair comparison, since
the purpose of the Forward Model is not to be bet-
ter than the raw Controller in these cases. The
main goal of the Forward Model is to provide more
stable object manipulation, when using previously
unseen objects. In order to test this, each trained
model was tested with each object, using Task 1,
using a specific key metric. This particular key met-
ric is defined as the number of different orientations
that are achieved by the models. The results are
presented in Table 2. For each object, two models
were tested: the model using the Forward Model
(represented by ”FM + C”) and the model using the
raw Controller (represented by ”C”)

From the overall results, there are two main ob-
servations. The first, which was also observed in
the Figures 6(a), 6(b) and 6(c), is that the mod-
els using the raw Controller are able to achieve a
higher average reward for almost every combina-
tion of model-object than the models using the For-
ward Model. However, it is also possible to observe
that the models using the Forward Model consis-
tently achieve a lower standard deviation. This
leads to the conclusion that although the average
performance is lower, the reproducibility and reli-
ability of the model is better when using the For-
ward Model. Another important observation con-
cerns the models with which the Pen is tested. It is
possible to confirm that for almost every model, the
models where the Forward Model was used have a
higher reward than the ones where it was not used.
This increase in performance is once again related
to the ability of the model using the Forward Model
to be more versatile. This is an important result
since the Pen is a different object than the Cube
or the Egg, which means that if other objects with
unique shapes were tested, the models using the
Forward Model would most likely perform better.
However, this is not true for the cases the model
being tested was also trained with the Pen (lines
3 and 5) but the reason for this was explained be-
fore. The results for Tasks 2 and 3 are not shown
here since they do not add anything to what was
previously concluded.

To conclude this experiment, a last table was ob-
tained. Table 3 is the summary of the results above

8

Table 2: Results for the different models tested with all objects for Task 1: task-free object manipulation. The colored cells
represent the cases where the object tested is the same as the object that the model was trained with.

Models
Object Cube Egg Pen

FM + C C FM + C C FM + C C
1 - Cube 5.43±2.72 7.49±3.75 9.22±3.11 13.47±3.52 3.71±1.81 3.23±1.61
2 - Egg 4.48±2.58 6.35±3.96 10.93±3.96 16.34±4.43 3.49±1.73 3.21±1.54
3 - Pen 4.98±2.71 5.46±2.73 9.12±3.18 9.88±3.28 4.01±2.27 5.09±2.79

4 - Cube 5.30±2.75 9.17±3.80 9.33±3.10 13.34±4.04 3.78±1.94 3.74±1.76
5 - Pen 5.14±2.74 6.64±3.01 9.19±3.47 11.19±3.56 4.03±2.19 8.40±4.91
6 - Egg 4.59±2.50 4.49±2.74 10.53±3.98 14.79±4.69 3.55±1.84 2.98±2.37

7 - Cube 5.50±2.76 10.45±4.78 8.51±2.64 14.82±4.22 3.87±2.03 5.11±3.54

(including the results from Tasks 2 and 3) where
each value is the average reward for a given Task,
using each of the objects. For instance, the first
value is the average of the rewards of all the mod-
els using the Forward Model, that were tested with
the Cube and using Task 1. It is once again clear
that although the models using the Forward Model
have a lower reward among all tasks, the standard
deviation has the opposite effect.

5. Conclusions
There were two main goals for this thesis. The first
was related to developing a model, the Controller,
capable of using tactile feedback to manipulate a
set of objects, based on a set of different tasks.
The second goal was to understand if using a rep-
resentation of the state instead of the actual state
would lead to an increase in performance and/or a
faster learning/adaptation when training with never
before seen objects.

Regarding the first objective, the main conclu-
sion is that the Controller was able to learn the
proposed tasks, to some degree, except Task 2.
Regarding Task 1, the Controller learned but the
maximum number of orientations achieved in a sin-
gle episode were roughly half of the total possible
orientations, indicating that the model could have
performed better. With Task 3, it is safe to assume
that the model learned correctly, but with Task 2,
the conclusion is the opposite, the model did not
learn properly.

Regarding the second goal, a main experiment
(Section 4.2) was conducted. First we conclude
that the model using the Controller is able to per-
form better (reward-wise) than the model using the
Forward Model. This can be explained by the fact
that the Controller specializes in performing a par-
ticular task, given a certain object, i.e. it is overfit-
ting, while the Forward model specializes in having
a more general control that is applicable for all ob-
jects. Despite having a lower average reward, the
models using the Forward Model have, on average,
a smaller standard deviation. This leads to the con-
clusion that the Forward Model is able to provide

a more reproducible and reliable control. Another
important conclusion is regarding the specific case
where the Pen is used. The fact that the perfor-
mance of the Forward Model, when using the Pen
is, most of the times, is equal or even greater that
the performance with the Controller, leads to the
fact that the Forward Model could provide a bet-
ter result when using object with unique shapes.
Moreover, it leads to conclude that the Forward
Model was indeed able to generalize to different
objects to some degree, achieving the proposed
objective of having a more general controller to dif-
ferent objects.

It is important to note that using Deep RL meth-
ods to solve a given problem, although providing
state of the art results in various fields, are not a
very reliable method. The work in [10] concludes
that a small variance in the hyperparameters or in
the architecture of the networks can lead to signif-
icantly different results. Moreover, the hand/object
interaction is a non-trivial relation, considering the
high dimension of the state vector and actions.
However, it was shown that is it possible to ma-
nipulate a set of object, based on tactile feedback,
using Deep RL methods.

5.1. Future work
Regarding future work, an important improvement
is to design a better Forward Model. As it was
demonstrated, this Forward Model had some trou-
bles with predicting the next state, specially regard-
ing the touch sensors information. This may have
lead to undesired results and a possible solution
would be to further adapt the loss function or the
architecture of the model itself. Moreover, PPO is
an Actor-Critc algorithm, meaning that it trains 2
networks simultaneously: one to choose the best
action (actor) and another to evaluate the expected
reward from that action (critic). A possible improve-
ment could be to integrate the Forward Model with
the Deep RL algorithm itself, more specifically, with
the critic network. This would provide the Deep RL
algorithm a better approximation to future states.

Lastly, another future improvement could be re-

9

Table 3: Average rewards for all the models for the different tasks and objects.

Cube Egg Pen
FM + C C FM + C C FM + C C

Task 1 5.06±0.4 7.15±2.08 9.55±0.86 13.4±2.23 3.78±0.21 4.54±1.92
Task 2 0.16±0.03 0.19±0.05 0.01±0.01 0.02±0.02 0.00±0.00 0.00±0.00
Task 3 0.11±0.06 0.23±0.18 0.59±0.2 0.64±0.24 0.23±0.05 0.24±0.07

lated to the actual setup of the experiments, i.e.
the objects and tasks used. Regarding the objects,
the Forward Model could have been even more
general if other objects were added or even if the
weight of the current object was changed, which
was not tested in this thesis. Regarding the tasks,
the reward functions could be improved, specially
regarding tasks 1 and 2, and even more specifically
to Task 2.

References
[1] ShadowRobot Dexterous Hand, 2005.

[2] O. M. Andrychowicz, B. Baker, M. Chociej,
R. Jozefowicz, B. McGrew, J. Pachocki,
A. Petron, M. Plappert, G. Powell, A. Ray,
et al. Learning dexterous in-hand manipula-
tion. The International Journal of Robotics Re-
search, 39(1):3–20, 2020.

[3] Y. Bengio, A. Courville, and P. Vincent. Rep-
resentation learning: A review and new per-
spectives. IEEE transactions on pattern anal-
ysis and machine intelligence, 35(8):1798–
1828, 2013.

[4] G. Brockman, V. Cheung, L. Pettersson,
J. Schneider, J. Schulman, J. Tang, and
W. Zaremba. Openai gym. arXiv preprint
arXiv:1606.01540, 2016.

[5] Y. Chebotar, O. Kroemer, and J. Peters.
Learning robot tactile sensing for object ma-
nipulation. In 2014 IEEE/RSJ International
Conference on Intelligent Robots and Sys-
tems, pages 3368–3375. IEEE, 2014.

[6] G. Cotugno, K. Althoefer, and T. Nanayakkara.
The role of the thumb: Study of finger mo-
tion in grasping and reachability space in hu-
man and robotic hands. IEEE Transactions
on Systems, Man, and Cybernetics: Systems,
47(7):1061–1070, 2016.

[7] Y. Duan, X. Chen, R. Houthooft, J. Schulman,
and P. Abbeel. Benchmarking deep reinforce-
ment learning for continuous control. In In-
ternational Conference on Machine Learning,
pages 1329–1338, 2016.

[8] T. Erez, Y. Tassa, and E. Todorov. Simu-
lation tools for model-based robotics: Com-
parison of bullet, havok, mujoco, ode and

physx. In 2015 IEEE international conference
on robotics and automation (ICRA), pages
4397–4404. IEEE, 2015.

[9] M. C. Gemici and A. Saxena. Learning hap-
tic representation for manipulating deformable
food objects. In 2014 IEEE/RSJ International
Conference on Intelligent Robots and Sys-
tems, pages 638–645. IEEE, 2014.

[10] R. Islam, P. Henderson, M. Gomrokchi, and
D. Precup. Reproducibility of benchmarked
deep reinforcement learning tasks for continu-
ous control. arXiv preprint arXiv:1708.04133,
2017.

[11] S. Ivaldi, V. Padois, and F. Nori. Tools
for dynamics simulation of robots: a sur-
vey based on user feedback. arXiv preprint
arXiv:1402.7050, 2014.

[12] A. Rajeswaran, V. Kumar, A. Gupta, G. Vez-
zani, J. Schulman, E. Todorov, and S. Levine.
Learning complex dexterous manipulation
with deep reinforcement learning and demon-
strations. arXiv preprint arXiv:1709.10087,
2017.

[13] J. Schulman, F. Wolski, P. Dhariwal, A. Rad-
ford, and O. Klimov. Proximal policy
optimization algorithms. arXiv preprint
arXiv:1707.06347, 2017.

[14] H. Van Hoof, N. Chen, M. Karl, P. van der
Smagt, and J. Peters. Stable reinforcement
learning with autoencoders for tactile and vi-
sual data. In 2016 IEEE/RSJ International
Conference on Intelligent Robots and Sys-
tems (IROS), pages 3928–3934. IEEE, 2016.

[15] H. Van Hoof, T. Hermans, G. Neumann, and
J. Peters. Learning robot in-hand manipula-
tion with tactile features. In 2015 IEEE-RAS
15th International Conference on Humanoid
Robots (Humanoids), pages 121–127. IEEE,
2015.

[16] Z. Wang. Representation learning for tactile
manipulation. 2018.

[17] Z. Zhu, X. Wang, S. Bai, C. Yao, and X. Bai.
Deep learning representation using autoen-
coder for 3d shape retrieval. Neurocomputing,
204:41–50, 2016.

10

	Introduction
	Background
	RL
	Representation Learning
	Related Work
	Literature Analysis

	Methodology
	Architecture Overview
	Simulator
	Action Dimension
	Controller
	Task 1: Task-free object manipulation
	Task 2: Rotating the object
	Task 3: Lifting an object

	Forward Model

	Results & discussion
	Train and test Forward Model
	Controller versus Forward Model

	Conclusions
	Future work

